The vitamin D analogue paricalcitol attenuates hepatic ischemia/reperfusion injury through down-regulation of Toll-like receptor 4 signaling in rats
نویسندگان
چکیده
INTRODUCTION Recent studies have revealed that vitamin D and its synthetic analogues have a protective effect on experimental ischemia/reperfusion (I/R) models in several organs, but little is known about its effect on the liver. The aim of this study was to evaluate the beneficial effects of vitamin D in a model of liver I/R in rats, focusing on Toll-like receptor (TLR) 4 signaling, which has been shown to be involved in I/R injury. MATERIAL AND METHODS Twenty-four male Wistar rats were randomized into four groups: Saline + Sham, Saline + I/R, Paricalcitol + Sham, and Paricalcitol + I/R. A synthetic vitamin D2 analogue, paricalcitol, was intraperitoneally injected 24 h prior to surgery. The animals were subjected to 60 min of partial warm ischemia (70%), followed by reperfusion for 6 h on the same day. The ischemic lobe of the liver and blood were collected for molecular biochemical analyses. RESULTS Liver damage following I/R was diminished by pretreatment with paricalcitol. Pretreatment with paricalcitol decreased the levels of pro-inflammatory mediators, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and macrophage migration inhibitory factor (MIF), in both plasma and liver tissue. In addition, pretreatment with paricalcitol markedly down-regulated the expression of TLR4, HMGB1, TNF-α and NF-κB. CONCLUSIONS The vitamin D analogue paricalcitol attenuates hepatic I/R injury through down-regulation of the TLR4 signaling pathway and might be considered to be a potential nutritional therapeutic agent against I/R injury in the liver.
منابع مشابه
The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملProtective effects of vitamin D on ischemia-reperfusion injury of the ovary in a rat model
Objective(s): The aim of the present study is to investigate probable acute effects of vitamin D on ischemia-reperfusion injury in the rat ovary.Materials and Methods: A group of 30 Wistar albino rats was divided into five groups of 6 each. Group 1: underwent laparotomy only and the ovaries were removed. Group 2: 3-hr ischemia followed by excision of the ovaries. Group 3: 3-hr ischemia and 3...
متن کاملVitamin D attenuates hyperoxia-induced lung injury through downregulation of Toll-like receptor 4
With considerable morbidity and mortality, bronchopulmonary dysplasia (BPD) is a focus of attention in neonatology. Hyperoxia-induced lung injury has long been used as a model of BPD. Among all the signaling pathways involved, Toll-like receptor 4 (TLR4) has been demonstrated to play an important role, and is known to be regulated by vitamin D. This study aimed at elucidating the effect of vita...
متن کاملCandesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملOrexin-A Improves Hepatic Injury Following Renal Ischemia Reperfusion in Rats
Introduction: Orexins are novel neuropeptides that are localized in neurons in the lateral hypothalamus. They are implicated in a wide variety of physiological functions. Orexin peptides and receptors are found in many peripheral organs such as kidneys. It has been demonstrated that exogenous orexin-A can induce protective effects against ischemia–reperfusion injury in many organs. The goal ...
متن کامل